Batch Normalization

tflearn.layers.normalization.batch_normalization (incoming, beta=0.0, gamma=1.0, epsilon=1e-05, decay=0.9, stddev=0.002, trainable=True, restore=True, reuse=False, scope=None, name='BatchNormalization')

Normalize activations of the previous layer at each batch.

Arguments

  • incoming: Tensor. Incoming Tensor.
  • beta: float. Default: 0.0.
  • gamma: float. Default: 1.0.
  • epsilon: float. Defalut: 1e-5.
  • decay: float. Default: 0.9.
  • stddev: float. Standard deviation for weights initialization.
  • trainable: bool. If True, weights will be trainable.
  • restore: bool. If True, this layer weights will be restored when loading a model.
  • reuse: bool. If True and 'scope' is provided, this layer variables will be reused (shared).
  • scope: str. Define this layer scope (optional). A scope can be used to share variables between layers. Note that scope will override name.
  • name: str. A name for this layer (optional).

References

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shif. Sergey Ioffe, Christian Szegedy. 2015.

Links

http://arxiv.org/pdf/1502.03167v3.pdf


Local Response Normalization

tflearn.layers.normalization.local_response_normalization (incoming, depth_radius=5, bias=1.0, alpha=0.0001, beta=0.75, name='LocalResponseNormalization')

Input

4-D Tensor Layer.

Output

4-D Tensor Layer. (Same dimension as input).

Arguments

  • incoming: Tensor. Incoming Tensor.
  • depth_radius: int. 0-D. Half-width of the 1-D normalization window. Defaults to 5.
  • bias: float. An offset (usually positive to avoid dividing by 0). Defaults to 1.0.
  • alpha: float. A scale factor, usually positive. Defaults to 0.0001.
  • beta: float. An exponent. Defaults to 0.5.
  • name: str. A name for this layer (optional).

L2 Normalization

tflearn.layers.normalization.l2_normalize (incoming, dim, epsilon=1e-12, name='l2_normalize')

Normalizes along dimension dim using an L2 norm.

For a 1-D tensor with dim = 0, computes

output = x / sqrt(max(sum(x**2), epsilon))

For x with more dimensions, independently normalizes each 1-D slice along dimension dim.

Arguments

  • incoming: Tensor. Incoming Tensor.
  • dim: int. Dimension along which to normalize.
  • epsilon: float. A lower bound value for the norm. Will use sqrt(epsilon) as the divisor if norm < sqrt(epsilon).
  • name: str. A name for this layer (optional).

Returns

A Tensor with the same shape as x.