Embedding
tflearn.layers.embedding_ops.embedding (incoming, input_dim, output_dim, validate_indices=False, weights_init='truncated_normal', trainable=True, restore=True, reuse=False, scope=None, name='Embedding')
Embedding layer for a sequence of integer ids or floats.
Input
2-D Tensor [samples, ids].
Output
3-D Tensor [samples, embedded_ids, features].
Arguments
- incoming: Incoming 2-D Tensor.
- input_dim: list of
int
. Vocabulary size (number of ids). - output_dim: list of
int
. Embedding size. - validate_indices:
bool
. Whether or not to validate gather indices. - weights_init:
str
(name) orTensor
. Weights initialization. (see tflearn.initializations) Default: 'truncated_normal'. - trainable:
bool
. If True, weights will be trainable. - restore:
bool
. If True, this layer weights will be restored when loading a model - reuse:
bool
. If True and 'scope' is provided, this layer variables will be reused (shared). - scope:
str
. Define this layer scope (optional). A scope can be used to share variables between layers. Note that scope will override name. - name: A name for this layer (optional). Default: 'Embedding'.